ВИБІР КІСТКОВОЗАМІСНИХ МАТЕРІАЛІВ У СТОМАТОЛОГІЇ ТА ЩЕЛЕПНО-ЛИЦЕВІЙ ХІРУРГІЇ: ЗА ДАНИМИ АНАЛІЗУ СУЧАСНОЇ ЛІТЕРАТУРИ
DOI:
https://doi.org/10.32782/3041-1394.2025-2.2Ключові слова:
кістковозамісні матеріали, германій, кальцій-фосфатна кераміка, регенерація, кістковий дефектАнотація
Вступ. Кісткові дефекти щелепно-лицевої ділянки залишаються актуальним питанням у практичній діяльності лікаря хірурга-стоматолога. Серед найбільш поширених причин локального дефіциту кісткової тканини вирізняють: травми альвеолярного паростку, захворювання пародонту, інфекційні процеси, пухлинні захворювання, вроджені вади розвитку тощо. Аутологічна кістка вважається «золотим стандартом» в усуненні кісткових дефектів, але її використання є обмеженим через значний ризик ускладнень та явище резорбції. Ало- та ксенотрансплантати не завжди позитивно сприймаються пацієнтами через їх походження, ризики відторгнення і низьку біодеградацію. Синтетичні матеріали, зокрема кальцій-фосфатні (Ca-P) кераміки, можуть сформувати нові перспективи в регенеративній медицині. Метою дослідження є проведення систематичного аналізу сучасних кістковозамісних матеріалів та їх клінічну ефективність. Матеріали і методи. Проведено аналіз сучасних літературних джерел за 1996–2025 рр. у базах NIH, PubMed, MEDLINE, Scopus, Web of Science, повнотекстових версій статей (з відкритим доступом), що присвячені властивостям кістковозамісних матеріалів у практиці лікаря-стоматолога. Результати. Аутотрансплантати мають високу остеогенність, але супроводжуються ризиками резорбції та ускладнень у донорських ділянках. Алотрансплантати, хоч і забезпечують остеокондукцію, схильні до імунних реакцій, ризику інфекцій і високої вартості. Ксенотрансплантати з бичачої кістки мають добру біосумісність, проте не резорбуються, що може знижувати контакт з імплантатом. Кальцій-фосфатна кераміка (КФК) демонструє остеокондуктивність, біосумісність і потенціал для остеоіндукції, особливо завдяки пористій структурі та нанотопографії. Висновки. Жоден матеріал не є універсальним, вибір лікаря залежить від багатьох факторів і часто не є очевидним. На наш погляд, перспективним є використання двофазної КФК (ДКФК), що комбінує в собі декілька ефектів одночасно для ефективної клінічної практики.
Посилання
Elsalanty M. E., Genecov D. G. Bone grafts in craniofacial surgery. Craniomaxillofacial Trauma & Reconstruction. 2009. Vol. 2, No. 3. P. 125–134. DOI: https://doi.org/10.1055/s-0029-1215875.
de Sousa C. A., Lemos C. A. A. et al. Bone augmentation using autogenous bone versus biomaterial in the posterior region of atrophic mandibles: a systematic review and meta-analysis. Journal of Dentistry. 2018. Vol. 76. P. 1–8. DOI: https://doi.org/10.1016/j.jdent.2018.06.014.
Trbakovic A., Hedenqvist P. et al. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model. Journal of Dentistry. 2018. Vol. 70. P. 31–39. DOI: https://doi.org/10.1016/j.jdent.2017.12.009.
Sandberg O. H., Aspenberg P. Inter-trabecular bone formation: a specific mechanism for healing of cancellous bone. Acta Orthopaedica. 2016. Vol. 87, No. 5. P. 459–465. DOI: https://doi.org/10.1080/17453674.2016.1205172.
Kolk A., Handschel J. et al. Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery. 2012. Vol. 40, No. 8. P. 706–718. DOI: https://doi.org/10.1016/j.jcms.2012.01.002.
Spin-Neto R., Stavropoulos A. et al. Fate of autologous and fresh-frozen allogeneic block bone grafts used for ridge augmentation: a CBCT-based analysis. Clinical Oral Implants Research. 2013. Vol. 24, No. 2. P. 167–173. DOI: https://doi.org/10.1111/j.1600-0501.2011.02324.x.
Sapoznikov L., Humphrey M. Progress in dentin-derived bone graft materials: a new xenogeneic dentin-derived material with retained organic component allows for broader and easier application. Cells. 2024. Vol. 13, No. 21. P. 1806. DOI: https://doi.org/10.3390/cells13211806.
Schmidt A. H. Autologous bone graft: is it still the gold standard? Injury. 2021. Vol. 52, Suppl. 2. P. S18–S22. DOI: https://doi.org/10.1016/j.injury.2021.01.043.
Redko N., Drobyshev A. et al. Comparative effectiveness of an autologous dentin matrix for alveolar ridge preservation. Medicina. 2024. Vol. 60, No. 8. P. 1280. DOI: https://doi.org/10.3390/medicina60081280.
Crespi R., Vinci R., Romanos P. Calvarial versus iliac crest for autologous bone graft material for a sinus lift procedure: a histomorphometric study. International Journal of Oral & Maxillofacial Implants. 2007. Vol. 22, No. 4. P. 527–532.
Froum S. J., Wallace S. S. et al. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. International Journal of Periodontics & Restorative Dentistry. 2006. Vol. 26, No. 6. P. 543–551.
Christensen J. G., Grønlund G. P. et al. Horizontal alveolar ridge augmentation with xenogenic block grafts compared with autogenous bone block grafts for implant-retained rehabilitation: a systematic review and meta-analysis. Journal of Oral & Maxillofacial Research. 2023. Vol. 14, No. 2. e1. DOI: https://doi.org/10.5037/jomr.2023.14201.
Miron R. J. Optimized bone grafting. Periodontology 2000. 2024. Vol. 94, No. 1. P. 143–160. DOI: https://doi.org/10.1111/prd.12517.
Donos N., Akcali A. et al. Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome? Periodontology 2000. 2023. Vol. 93, No. 1. P. 26–55. DOI: https://doi.org/10.1111/prd.12518.
Kalsi A. S., Bassi S. Alveolar ridge conservation: why, when and how. British Dental Journal. 2019. Vol. 227, No. 4. P. 264–274. DOI: https://doi.org/10.1038/s41415-019-0647-2.
Pan J., Xu Q., Hou J. Effect of platelet-rich fibrin on alveolar ridge preservation: a systematic review. Journal of the American Dental Association. 2019. Vol. 150, No. 9. P. 766–778. DOI: https://doi.org/10.1016/j.adaj.2019.04.025.
Khojasteh A., Kheiri L. et al. Guided bone regeneration for the reconstruction of alveolar bone defects. Annals of Maxillofacial Surgery. 2017. Vol. 7, No. 2. P. 263–277. DOI: https://doi.org/10.4103/ams.ams_76_17.
Kloss F. R., Offermanns V., Kloss-Brandstätter A. Comparison of allogeneic and autogenous bone grafts for augmentation of alveolar ridge defects: a 12-month retrospective radiographic evaluation. Clinical Oral Implants Research. 2018. Vol. 29, No. 11. P. 1163–1175. DOI: https://doi.org/10.1111/clr.13380.
Yamada M., Egusa H. Current bone substitutes for implant dentistry. Journal of Prosthodontic Research. 2018. Vol. 62, No. 2. P. 152–161. DOI: https://doi.org/10.1016/j.jpor.2017.08.010.
Roberts T. T., Rosenbaum A. J. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012. Vol. 8, No. 2. P. 114–124. DOI: https://doi.org/10.4161/org.23306.
Calori G. M., Mazza E. et al. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011. Vol. 42, Suppl. 2. P. S56–S63. DOI: https://doi.org/10.1016/j.injury.2011.06.011.
Zhang S., Li X. et al. Comparison of autogenous tooth materials and other bone grafts. Tissue Engineering and Regenerative Medicine. 2021. Vol. 18, No. 3. P. 327–341. DOI: https://doi.org/10.1007/s13770-021-00333-4.
Ferraz M. P. Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials. Materials. 2023. Vol. 16, No. 11. P. 4117. DOI: https://doi.org/10.3390/ma16114117.
Sapoznikov L., Humphrey M. Progress in dentin-derived bone graft materials: a new xenogeneic dentin-derived material with retained organic component allows for broader and easier application. Cells. 2024. Vol. 13, No. 21. P. 1806. DOI: https://doi.org/10.3390/cells13211806.
Piattelli A., Scarano A. et al. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. Biomaterials. 1996. Vol. 17, No. 12. P. 1127–1131. DOI: https://doi.org/10.1016/0142-9612(96)85915-1.
Fernandez de Grado G., Keller L. et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering. 2018. Vol. 9. P. 2041731418776819. DOI: https://doi.org/10.1177/2041731418776819.
Winkler T., Sass F. et al. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone & Joint Research. 2018. Vol. 7, No. 10. P. 232–243. DOI: https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1.
Kurkcu M., Benlidayi M. E. et al. Anorganic bovine-derived hydroxyapatite vs beta-tricalcium phosphate in sinus augmentation: a comparative histomorphometric study. Journal of Oral Implantology. 2012. Vol. 38, No. 6. P. 519–526. DOI: https://doi.org/10.1563/AAID-JOI-D-11-00061.
Zhao R., Yang R. et al. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021. Vol. 26, No. 10. P. 3007. DOI: https://doi.org/10.3390/molecules26103007.
Friedmann A., Strietzel F. P. et al. Histological assessment of augmented jaw bone utilizing a new collagen barrier membrane compared to a standard barrier membrane to protect a granular bone substitute material. Clinical Oral Implants Research. 2002. Vol. 13, No. 6. P. 587–594.
Hammerle C. H., Chiantella G. C. et al. The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clinical Oral Implants Research. 1998. Vol. 9, No. 3. P. 151–162.
Ayna M., Acil Y., Gulses A. Fate of a bovine-derived xenograft in maxillary sinus floor elevation after 14 years: histologic and radiologic analysis. International Journal of Periodontics & Restorative Dentistry. 2015. Vol. 35, No. 5. P. 541–547.
Miron R. J., Sculean A. et al. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autografts, xenografts, and DFDBA. Clinical Oral Implants Research. 2016. Vol. 27, No. 6. P. 668–675. DOI: https://doi.org/10.1111/clr.12642.
Miron R. J., Zhang Q. et al. Osteoinductive potential of 4 commonly employed bone grafts. Clinical Oral Investigations. 2016. Vol. 20, No. 8. P. 2259–2265. DOI: https://doi.org/10.1007/s00784-016-1772-2.
Carmagnola D., Adriaens P., Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clinical Oral Implants Research. 2003. Vol. 14, No. 2. P. 137–143. DOI: https://doi.org/10.1034/j.1600-0501.2003.140201.x.
Lima R. G., Lima T. G. et al. Bone volume dynamics and implant placement torque in horizontal bone defects reconstructed with autologous or xenogeneic block bone: a randomized, controlled, split-mouth, prospective clinical trial. International Journal of Oral & Maxillofacial Implants. 2018. Vol. 33, No. 4. P. 888–894.
Susin C., Lee J. F. et al. Screening of hydroxyapatite biomaterials for alveolar augmentation using a rat calvaria critical-size defect model: bone formation/maturation and biomaterials resolution. Biomolecules. 2022. Vol. 12, No. 11. P. 1677. DOI: https://doi.org/10.3390/biom12111677.
Wüster J., Neckel N. et al. Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula. Regenerative Biomaterials. 2024. Vol. 11. rbae041. DOI: https://doi.org/10.1093/rb/rbae041.
Ferraz M. P. Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials. Materials. 2023. Vol. 16, No. 11. P. 4117. DOI: https://doi.org/10.3390/ma16114117.
Hou X., Zhang L. et al. Calcium phosphate-based biomaterials for bone repair. Journal of Functional Biomaterials. 2022. Vol. 13, No. 4. P. 187. DOI: https://doi.org/10.3390/jfb13040187.
Denry I., Kuhn L. T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials. 2016. Vol. 32, No. 1. P. 43–53. DOI: https://doi.org/10.1016/j.dental.2015.10.007.
Yuan H., Yang Z., Li Y. et al. Osteoinduction by calcium phosphate biomaterials. Journal of Materials Science: Materials in Medicine. 1998. Vol. 9, No. 12. P. 723–726. DOI: https://doi.org/10.1023/A:1008877426794.
Samavedi S., Whittington A. R., Goldstein A. S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomaterialia. 2013. Vol. 9, No. 8. P. 8037–8054. DOI: https://doi.org/10.1016/j.actbio.2013.03.004.
Zhang X., Zhou J., Chen W. et al. A calcium phosphate bioceramics with osteoinduction. In: Proceedings of the 4th World Biomaterials Congress, Berlin, Germany, 24–28. 1992.
McNamara L. E., McMurray R. J., Biggs M. J. et al. Nanotopographical control of stem cell differentiation. Journal of Tissue Engineering. 2010. Vol. 1. 120623. DOI: https://doi.org/10.4061/2010/120623.
Lock J., Liu H. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. International Journal of Nanomedicine. 2011. Vol. 6. P. 2769–2777. DOI: https://doi.org/10.2147/IJN.S24493.
Li Q., Feng C. et al. Strategies of strengthening mechanical properties in the osteoinductive calcium phosphate bioceramics. Regenerative Biomaterials. 2023. Vol. 10. rbad013. DOI: https://doi.org/10.1093/rb/rbad013.
Ievlev V. M., Kostyuchenko A. V. et al. Structure and nanohardness of compact hydroxyapatite-based ceramics. Inorganic Materials. 2019. Vol. 55. P. 1054–1060.
Wang Y., Wang M. et al. Enhancing mechanical and biological properties of biphasic calcium phosphate ceramics by adding calcium oxide. Journal of the American Ceramic Society. 2021. Vol. 104, No. 2. P. 548–563. DOI: https://doi.org/10.1111/jace.17683.
Hu X., Zhang W., Hou D. Synthesis, microstructure and mechanical properties of tricalcium phosphate–hydroxyapatite (TCP/HA) composite ceramic. Ceramics International. 2020. Vol. 46, No. 7. P. 9810–9816. DOI: https://doi.org/10.1016/j.ceramint.2020.02.157.
Sutthavas P., Habibovic P., Van Rijt S. H. The shape-effect of calcium phosphate nanoparticle-based films on their osteogenic properties. Biomaterials Science. 2021. Vol. 9, No. 5. P. 1754–1766. DOI: https://doi.org/10.1039/D0BM01494J.
Jing W., Dan L., Bo G. et al. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomaterialia. 2017. Vol. 51. P. 447–460. DOI: https://doi.org/10.1016/j.actbio.2017.01.047.
Gallinetti S., Canal C., Ginebra M. P. Development and characterization of biphasic hydroxyapatite/β-TCP cements. Journal of the American Ceramic Society. 2014. Vol. 97, No. 4. P. 1065–1073. DOI: https://doi.org/10.1111/jace.12861.
Jelusic D., Zirk M. L. et al. Monophasic ss-TCP vs biphasic HA/ss-TCP in two-stage sinus floor augmentation procedures: a prospective randomized clinical trial. Clinical Oral Implants Research. 2017. Vol. 28, No. 10. e175. DOI: https://doi.org/10.1111/clr.12983.
Fernandez de Grado G., Keller L. et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering. 2018. Vol. 9. 2041731418776819. DOI: https://doi.org/10.1177/2041731418776819.
Bouwman W. F., Bravenboer N. et al. Tissue level changes after maxillary sinus floor elevation with three types of calcium phosphate ceramics: a radiological study with a 5-year follow-up. Materials. 2021. Vol. 14, No. 6. P. 1471. DOI: https://doi.org/10.3390/ma14061471.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.





