DYNAMICS OF NEUROLOGICAL DEFICITS IN RATS WITH THE SIMULATED EQUIVALENT OF MULTIPLE SCLEROSIS UNDER THE INFLUENCE OF CRYOEXTRACTS OF THE PLACENTA AND SPLEEN, AS WELL AS THE CONDITIONED MEDIUM OF MESENCHYMAL STEM CELLS

Authors

  • F.V. Hladkykh Kharkiv National University named after V.N. Karazina of the Ministry of Education and Culture of Ukraine, State Institution "Institute of Medical Radiology and Oncology named after S.P. Grigoriev National Academy of Sciences https://orcid.org/0000-0001-7924-4048

DOI:

https://doi.org/10.32782/2786-9067-2024-27-3

Keywords:

autoimmune diseases, multiple sclerosis, allergic encephalomyelitis, neurological deficit, muscle tone, emotional activity, cell-free cryopreserved biological agents, conditioned medium of mesenchymal stem cells

Abstract

Background. Neurodegeneration in multiple sclerosis (MS) is caused by the attack of autoreactive lymphocytes on the myelin sheath and the endogenous failure of remyelination, which ultimately leads to the accumulation of neurological disability. The chronic course of MS can lead to significant mental and physical symptoms and irreversible neurological disorders, including muscle weakness, ataxia, tremors, spasticity, paralysis, balance disorders, cognitive impairment, vision loss, diplopia, dizziness, swallowing and speech disorders, sensory deficits, bladder and bowel dysfunction, pain, fatigue, and depression. Existing immunomodulatory drugs, despite the fact that they are very effective in reducing the frequency of MS relapses, do not prevent progressive neurodegenerative processes and do not have a regenerative effect, but can cause significant side effects. Objective: to characterize the expressiveness of the neurological deficit according to the indicators of muscle tone and behavioral reactions in the model of multiple sclerosis – in allergic encephalomyelitis (AEM) in rats against the background of the use of cryoextracts of the placenta (СEP) and spleen (СES), and conditioned medium of mesenchymal stem cells (MSC-CM). Methods. Experimental studies were conducted on 42 non-linear laboratory male rats weighing 200–220 g. AEM was modeled by injecting encephalitogenic emulsion subcutaneously into the base of the tail at the dose of 1.0 ml/kg of body weight. The emulsion consisted of Freund's complete adjuvant and allogeneic brain homogenate in a 1:1 ratio. AEM treatment was carried out from the 12th to the 20th day of the experiment. CEP, CES and MSC-CM were administered every other day (a total of 5 injections), on days 12, 14, 16, 18 and 20, respectively. The study of neurological deficits in the model of AEM in rats was carried out by evaluating the muscle tone and behavioral reactions of animals (namely, emotional activity) in dynamics, according to the simulation of AEM ("0" day), on the 12th and 21st days of the experiment. Results. A statistically significant (p=0.009) decrease in muscle tone by 73.8% and a statistically significant (p=0.02) decrease in emotional activity by 70.4% relative to baseline values were noted in rats with simulated AEM on the 12th day of the experiment. It was found that on the 21st day of the experiment, against the background of the introduction of CES, the muscle strength of rats with AEM decreased statistically significantly (р˂0.03) by 53.3%, and against the background of the use of CES, the similar indicator decreased (р˂0.01) by 61.3% relative to the indicators in the corresponding groups on the 12th day of the experiment, which was 1.8 and 2.1, respectively, inferior to the effectiveness of the reference drug methylprednisolone. The study showed that the introduction of MSC-CM led to an almost complete stop of the loss of muscle strength in rats with AEM, since the indicated indicator on the 21st day of the experiment was practically comparable to the similar indicator on the 12th day of the experiment and was 4.7±0.5 s, respectively and 4.6±0.4 s, which by 26.9% (р=0.16) exceeded the effectiveness of both the studied cryoextracts and the reference drug methylprednisolone in terms of their ability to slow down the loss of muscle mass. Conclusions. According to the expressiveness of preservation of muscle tone in rats with AEM on day 21 relative to the indicator on day 14, it is advisable to place the investigated cell-free cryopreserved biological agents in the following sequence: MSC-CM (+3.1%; p=0.37) ˃ CEP (-53 .3%; p˂0.03) ˃ CES (-61.3%; p˂0.01). According to the magnitude of the increase in emotional activity in rats with AEM on the 21st day of the experiment relative to the indicators on the 14th day, it is advisable to place the investigated cell-free cryopreserved biological agents in the following sequence: MSC-CM (+288.9%; p˂0.01) ˃ CEP (+162 .5%; p=0.09) ˃ CES (+150.0%; p=0.09).

References

Беспалова І.Г. Пептидний склад та біологічна дія екстрактів кріоконсервованих фрагментів селезінки свиней та шкіри поросят : дис. … к. біол. н. : 03.00.19. Харків, 2016. 162 с. https://nrat.ukrintei.ua/searchdoc/0416U004539/

Веселовська О.В., Шляхова А.В., Гармаш Т.І. Ефекти дистантної імплантації ембріональних тканин медичної п’явки у щурів з геморагічним інсультом. Український неврологічний журнал. 2015. № 2. С. 87–92. http://nbuv.gov.ua/UJRN/UNJ_2015_2_18

Гладких Ф.В. Мезенхімальні стовбурові клітини: екзосоми та кондиціоновані середовища як інноваційні стратегії у лікуванні хворих на аутоімунні захворювання. Клінічна та профілактична медицина. 2023. № 6(28). С. 121–30. DOI: https://doi.org/10.31612/2616-4868.6.2023.15

Гладких Ф.В. Перспективи застосування імуномодуляторів у лікуванні хворих на аутоімунних захворювань: фокус на екстракти біологічних тканин (кріоекстракт плаценти та кріоекстракт селезінки). Імунологія та алергологія: наука і практика. 2023. № 4. С. 29–46. DOI: https://doi.org/10.37321/immunology.2023.4-04

Глоба В.Ю. Застосування кріоконсервованих культур клітин та нейротрофічних факторів при експериментальній інфравезікальній обструкції. дис. … PhD : 222. Харків, 2021. 156 с. https://nrat.ukrintei.ua/searchdoc/0821U100913/

Дейко Р.Д. Експериментальне вивчення церебропротекторних та психотропних властивостей нових циклічних і лінійних олігопептидів : дис. … к.фарм.н. : 14.03.05. 2017. 258 с. https://nrat.ukrintei.ua/searchdoc/0418U002231/

Нефьодов О.О., Мамчур В.Й., Харченко В.Ю. Моделювання та оцінка перебігу експериментального алергічного енцефаломієліту. Вісник проблем біології і медицини. 2014. № 4(114). С. 205–8. http://nbuv.gov.ua/UJRN/Vpbm_2014_4%282%29__46

Шепітько В.І. Структурно-функціональні показники кріоконсервованої печінки і вплив її трансплантації на морфофункціональний стан ряду внутрішніх органів : дис. … д.мед.н. : 14.01.35. Харків, 2004. 326 с. https://nrat.ukrintei.ua/searchdoc/0504U000610/

Benedict R.H.B., Amato M.P., DeLuca J., Geurts J.J.G. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. The Lancet. Neurology. 2020. 19 (10). Р. 860–871. DOI: https://doi.org/10.1016/S1474-4422(20)30277-5

Christodoulou M.V., Petkou E., Atzemoglou N., Gkorla E., Karamitrou A., Simos Y.V., Bellos S., Bekiari C., Kouklis P., Konitsiotis S., Vezyraki P., Peschos D., Tsamis K.I. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Human cell. 2024. № 37 (1). Р. 9–53. DOI: https://doi.org/10.1007/s13577-023-01006-1

Golubinskaya P.A., Sarycheva M.V., Dolzhikov A.A., Bondarev V.P., Stefanova M.S., Soldatov V.O., Nadezhdin S.V., Korokin M.V., et al. Application of multipotent mesenchymal stem cell secretome in the treatment of adjuvant arthritis and contact-allergic dermatitis in animal models. Pharmacy & Pharmacology. 2020. № 8 (6). Р. 416–25. DOI: https://doi.org/10.19163/2307-9266-2020-8-6-416-425

Gugliandolo, A., Bramanti, P., Mazzon, E. Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. International journal of molecular sciences. 2020. № 21 (22). Р. 8662. DOI: https://doi.org/10.3390/ijms21228662

Haan A., van der Vliet M.R., Hendriks J.J., Heijnen D.A., Dijkstra, C.D. Changes in characteristics of rat skeletal muscle after experimental allergic encephalomyelitis. Muscle & nerve. 2004. № 29 (3). Р. 369–375. DOI: https://doi.org/10.1002/mus.10554

Halabchi F., Alizadeh Z., Sahraian, M.A., Abolhasani M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC neurology. 2017. № 17 (1). Р. 185. DOI: https://doi.org/10.1186/s12883-017-0960-9

Hauser S.L., Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. The American journal of medicine. 2020. № 133 (12). Р. 1380–1390.e2. DOI: https://doi.org/10.1016/j.amjmed.2020.05.049

Johnen A., Landmeyer N.C., Bürkner P.C., Wiendl H., Meuth S.G., Holling, H. Distinct cognitive impairments in different disease courses of multiple sclerosis – A systematic review and meta-analysis. Neuroscience and biobehavioral reviews. 2017. № 83. Р. 568–578. DOI: https://doi.org/10.1016/j.neubiorev.2017.09.005

Margoni M., Preziosa P., Rocca M.A., Filippi M. Depressive symptoms, anxiety and cognitive impairment: emerging evidence in multiple sclerosis. Translational psychiatry. 2023. № 13 (1). Р. 264. DOI: https://doi.org/10.1038/s41398-023-02555-7

Yan F., Robert M., LiY. Statistical methods and common problems in medical or biomedical science research. International Journal of Physiology, Pathophysiology and Pharmacology. 2017. № 9 (5). Р. 157–63.

Published

2024-09-10