ANTIVIRAL ACTIVITY OF THE DOMESTIC DRUG “TETLONG-250” IN CORONAVIRUS INFECTION IN LABORATORY MICE
DOI:
https://doi.org/10.32782/2786-9067-2025-30-5Keywords:
antiviral activity, coronavirus infection in vivo, antiviral drugs, “Tetlong-250” preparation.Abstract
Abstract. Given the widespread spread of COVID-19 coronavirus infection in the world, the significant damage that this dangerous disease causes to the population of the planet, the constant emergence and circulation among people of new variants of the pathogen of this disease and the complexity of combating this disease, the search for new effective anti-coronavirus drugs remains an urgent problem. The aim of this study was to determine the antiviral activity of the domestic drug “Tetlong-250” in experimental coronavirus infection in laboratory mice caused by the mouse hepatitis coronavirus, which belongs to the same subgroup of coronaviruses (genus Betacoronavirus), which includes the causative agent of the COVID-19 pandemic – the SARS-CoV-2 virus. The determination of the activity of this agent was carried out in comparison with the effect on the specified coronavirus of the well-known antiviral drug Amiksin. It was established that the anti-alcohol drug “Tetlong-250” has a high statistically significant (P<0.001) anti-coronavirus activity, which was determined within 55.0–64.7% protection compared to control animals. At the same time, the interferon-inducing drug Amiksin protected laboratory mice from mortality caused by coronavirus at the level of 20%. The high reliable anti-coronavirus effectiveness of the studied drug “Tetlong-250” is also indicated by the average life expectancy of experimental animals, which was within 9.8–11.7 days for all 6 administration regimens, which was 4.7–6.6 days higher than the similar indicator in control animals, and 2.7–4.6 days higher than with the optimal use of Amiksin. The results obtained provide grounds to state the feasibility of conducting appropriate extensive clinical trials of the drug “Tetlong-250” with the aim of its possible effective use for the treatment of people suffering from many coronavirus infections, including COVID-19.
References
Андронати С.А., Литвинова Л.А., Головенко Н.Я. Пероральный индуктор эндогенного интерферона – «Амиксин» и его аналоги (обзор литературы и собственных исследований. Журн. АМН Украины. 1999. Т. 5, № 1. С. 358–361.
Гудзь С.П., Перетятко Т.Б., Галушка А.А. Вірусологія. Львів : ЛНУ ім. І. Франка, 2018. 536 с.
Ершов Ф.И. Антивирусные препараты. М. : ГЭОТАР-Медиа, 2006. 312 с.
Інструкція для медичного застосування препарату ТЕТЛОНГ-250 URL: https://mozdocs.kiev.ua/likiview.php?id=2730.
Клестова З.С. Коронавіруси тварин – нові перспективи для досліджень коронавірусів людини. Київ : Спрінт-Сервіс, 2020. 257 с.
Кожем’якин Ю.М., Хромов О.С., Філоненко М.А., Сайретдінова Г.А. Науково-практичні рекомендації з утримання лабораторних тварин та робіт із ними. Київ, 2002. 155 с.
Козловский М.М., Виноград И.А., Ершов Ф.И. Поиски оптимальных схем применения индукторов интерферона. Современные аспекты применения интерферонов и других иммуно-модуляторов. М., 1990, С. 49–50.
Лакин Г.Ф. Сравнение выборочных долей. Биометрия. М. : Высшая школа. 1980. С. 104–107.
Пшеничнов В.А., Б.Ф.Семенов Б.Ф., Зезеров Е.Г. Стандартизация методов вирусологических исследований. М., 1974. 168 с.
Собетов Б.Г., Собетова В.Б., Алексевич Я.И. и др. Способ получения инъекционной формы дисульфирама. Патент РФ № RU2013090C1 от 30.05.1990.
Устінов О.В. Чим небезпечні нові субваріанти COVID-19, які вже виявляються в Україні. Український медичний часопис. 18 серпня 2025. URL: www.umj.com.ua/uk/novyna-268177-chim-nebezpechni-novi-subvarianti-covid-19-yaki-vzhe-viyavlyayutsya-v-ukrayini.
Чижов Н.П., Ф.И. Ершов, М.К. Индулен. Основы экспериментальной химиотерапии вирусных инфекций. Рига : Зинатне, 1988. 171 c.
Danik Iga Prasiska, Kennedy Mensah Osei, Durga Datta Chapagain et al. The global health security index and its role in shaping national COVID‑19 response capacities: a scoping review. Annals of Global Health. 2025. Vol. 91(1): 15. P. 1–13. DOI: 10.5334/aogh.4625.
European Convention for the Protection of Vertebrane Animals used for Experimental and Other Scientific Purposes: European Communities (EC). Strasbourg, 18.03.1986. European Treaty Series. 1986. № 123.
Luyan Xu, Jiahui Tong, Yiran Wu, Suwen Zhao, Bo-Lin Lin. A computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram and analogues. Biophysical Chemistryь 2021. Sept. Vol. 276. Р. 106610. DOI: 10.1016/j.bpc.2021.106610.
Min-Han Lin, David C Moses, Chih-Hua Hsieh et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research. 2018. Vol. 150. Р. 155–163. DOI: 10.1016/j.antiviral.2017.12.015.
Mohiuddin Md., Kasahara Kazuo. Investigating the aggressiveness of the COVID-19 Omicron variant and suggestions for possible treatment options. Respir. Med. 2022. Jan. № 191. Р. 106716. DOI: 10.1016/j.rmed.2021.106716.
Nobel C.S.I., Kimland M., Nicholson D.W. at al. Disulfiram is a potent inhibitor of proteases of the caspase family. Chemical Research in Toxicology. 1997. Vol. 10(12). P. 1319–1324.
Parums D.V. Editorial: The 2022 World Health Organization (WHO) Priority Recommendations and Response to the Omicron Variant (B.1.1.529) of SARS-CoV. Med. Sci. Monit. 2022. Feb. 1. № 28. Р. e936199. DOI: 10.12659/MSM.936199.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




