ABILITIES OF MODERN MRI EXAMINATION IN COMPLEX DIAGNOSIS OF TEMPOROMANDIBULAR DISORDERS

Authors

  • D.V. Shtybel
  • R.V. Kulinchenko
  • Y.O. Palamarchuk
  • A.V. Dvornyk

DOI:

https://doi.org/10.32782/3041-1394.2024-2.7

Keywords:

temporomandibular joint, temporomandibular disorders, magnetic resonance imaging, artificial intelligence

Abstract

Magnetic resonance imaging (MRI) is considered the standard for visualization of soft tissue structures of the temporomandibular joints (TMJs). With the development of MRI hard- and software, the quality of visualization of TMJ structures has significantly increased, which has led to improving diagnosis of temporomandibular disorders (TMD). Moreover, the latest methods such as ZTE, fused MRI-CBCT images, dynamic MRI and the use of artificial intelligence (AI) bring MRI technology to a completely different level of diagnostic abilities. Purpose of the study. To assess the capabilities of modern MRI in complex diagnosis of TMDs. Material and methods. Literature review was carried out by processing scientific and metric bases, as a result 34 articles were selected for processing the full text. Results. In the standard MRI protocol of TMJ diagnosisis, machines with a magnetic field strength of 1.5T or 3T and, as a rule, pulse sequences T1, T2, PD and Fsat with the mouth open and closed are used, describing TMJ structures in the oblique frontal and oblique sagittal planes. By dynamic MRI (real-time MRI), it is possible to evaluate the movements of the articular head and the disc in the TMJ, which allows you to correctly determine the type of disk displacement. For simultaneous evaluation of bone and soft tissues, pulse sequence of ZTE or fused MRI-CBCT images are used. The use of AI for the diagnosis of TMDs is quite promising, but it requires the involvement of a large amount of data, new criteria and methods of analysis for machine learning. Conclusions. Nowadays, the improvement of the quality of TMD diagnosis with the help of MRI is both due to the increasing of the technical characteristics of the devices, and the software, MRI software integration with other radiological methods of TMJ examination and the use of AI.

References

Okeson, J. P. (2019). Management of Temporomandibular Disorders and Occlusion – E-Book. Elsevier Health Sciences.

Hatcher, D. (2022). Anatomy of the mandible, temporomandibular joint, and dentition. Neuroimaging Clinics of North America, 32(4), 749–761. https://doi.org/10.1016/j.nic.2022.07.009.

Więckiewicz, M., Shiau, Y., & Boening, K. (2018). Pain of temporomandibular Disorders: From etiology to Management. Pain Research & Management, 1–2. https://doi.org/10.1155/2018/4517042.

Valesan, L. F., Da-Cas, C. D., Réus, J. C., Denardin, A. C. S., Garanhani, R. R., Bonotto, D., Januzzi, E., & De Souza, B. D. M. (2021). Prevalence of temporomandibular joint disorders: a systematic review and meta-analysis. Clinical Oral Investigations, 25 (2), 441–453. https://doi.org/10.1007/s00784-020-03710-w.

Кулінченко Р.В., Макєєв В.Ф., Кінаш Ю.О. Аналіз варіантів поєднання різних форм скронево-нижньощелепних розладів за результатами обстеження хворих. Клінічна Стоматологія. 2016. № 3. С. 35–38.

Alzahrani, A., Yadav, S., Gandhi, V., Lurie, A. G., & Tadinada, A. (2020). Incidental findings of temporomandibular joint osteoarthritis and its variability based on age and sex. Imaging Science in Dentistry, 50(3), 245. https://doi.org/10.5624/isd.2020.50.3.245.

Yadav, S., Yang, Y. T., Dutra, E. H., Robinson, J. L., & Wadhwa, S. (2018). Temporomandibular joint disorders in older adults. Journal of the American Geriatrics Society, 66(6), 1213–1217. https://doi.org/10.1111/jgs.15354.

Derwich, M., Mituś-Kenig, M., & Pawłowska, E. (2020). Interdisciplinary Approach to the Temporomandibular Joint Osteoarthritis-Review of the Literature. Medicina-lithuania, 56(5), 225. https://doi.org/10.3390/medicina56050225.

Schiffman, E.L., Ohrbach, R., Truelove, E.L., Look, J.O., Anderson, G. C., Goulet, J., List, T., Svensson, P., Gonzalez, Y., Lobbezoo, F., Michelotti, A., Brooks, S. L., Ceusters, W., Drangsholt, M., Ettlin, D. A., Gaul, C., Goldberg, L. J., Haythornthwaite, J. A., Hollender, L., Dworkin, S. F. (2014). Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. Journal of Oral and Facial Pain and Headache, 28(1), 6–27. https://doi.org/10.11607/jop.1151.

Song, H., Lee, J. Y., Huh, K., & Park, J. W. (2020). Long-term changes of temporomandibular joint osteoarthritis on computed tomography. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63493-8.

Lee, K. S., Kwak, H., Oh, J., Jha, N., Kim, Y. J., Kim, W., Baik, U., & Ryu, J. J. (2020). Automated detection of TMJ osteoarthritis based on artificial intelligence. Journal of Dental Research, 99(12), 1363–1367. https://doi.org/10.1177/0022034520936950.

Maranini, B., Ciancìo, G., Mandrioli, S., Galiè, M., & Govoni, M. (2022). The role of ultrasound in temporomandibular Joint Disorders: An update and future perspectives. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.926573.

Yılmaz, D., & Kamburoğlu, K. (2019). Comparison of the effectiveness of high resolution ultrasound with MRI in patients with temporomandibular joint dısorders. Dentomaxillofacial Radiology, 48(5), 20180349. https://doi.org/10.1259/dmfr.20180349.

Almeida, F. T., Pachêco Pereira, C., Flores Mir, C., Le, L. H., Jaremko, J. L., & Major, P. W. (2019). Diagnostic ultrasound assessment of temporomandibular joints: a systematic review and meta-analysis. Dentomaxillofacial Radiology, 48(2), 20180144. https://doi.org/10.1259/dmfr.20180144.

Xiong, X., Zheng, Y., Tang, H., Yi, W., Nie, L., Wei, X., Liu, Y., & Song, B. (2020). MRI of Temporomandibular Joint Disorders: recent advances and future directions. Journal of Magnetic Resonance Imaging, 54(4), 1039–1052. https://doi.org/10.1002/jmri.27338.

Kamel, Z. S. a. S. A., El-Shafey, M. H. R., Hassanien, O. A., & Nagy, H. A. (2021). Can dynamic magnetic resonance imaging replace static magnetic resonance sequences in evaluation of temporomandibular joint dysfunction? Egyptian Journal of Radiology and Nuclear Medicine, 52(1). https://doi.org/10.1186/s43055-020-00396-8.

Helms, C. A., Richardson, M. L., Moon, K. L., & Ware, W. R. (1984). Nuclear Magnetic Resonance Imaging of the Temporomandibular Joint: Preliminary observations. The Journal of Craniomandibular Practice, 2(3), 219–224. https://doi.org/10.1080/07345410.1984.11677866.

Roberts, D. W., Schenck, J. F., Pm, J., Foster, T. H., Hart, H. R., Pettigrew, J. C., Kundel, H. L., Edelstein, W. A., & Haber, B. (1985). Temporomandibular joint: magnetic resonance imaging. Radiology, 154(3), 829–830. https://doi.org/10.1148/radiology.154.3.3969490.

Wang, Y., Ma, R., Li, J., Mu, C., Zhao, Y., Meng, J., & Li, G. (2022). Diagnostic efficacy of CBCT, MRI and CBCT–MRI fused images in determining anterior disc displacement and bone changes of temporomandibular joint. Dentomaxillofacial Radiology, 51(2). https://doi.org/10.1259/dmfr.20210286.

Krohn, S., Joseph, A. A., Voit, D., Michaelis, T., Merboldt, K., Buergers, R., & Frahm, J. (2019). Multi-slice real-time MRI of temporomandibular joint dynamics. Dentomaxillofacial Radiology, 48(1), 20180162. https://doi.org/10.1259/dmfr.20180162.

Lee, C., Jeon, K. J., Han, S., Kim, Y. H., Choi, Y., Lee, A., & Choi, J. H. (2020). CT-like MRI using the zero-TE technique for osseous changes of the TMJ. Dentomaxillofacial Radiology, 49(3), 20190272. https://doi.org/10.1259/dmfr.20190272.

Tălmăceanu, D., Lenghel, L. M., Bolog, N., Hedeșiu, M., Buduru, S., Rotaru, H., Băciuț, M., & Băciuț, G. (2018). Imaging modalities for temporomandibular joint disorders: an update. Medicine and Pharmacy Reports, 91(3), 280–287. https://doi.org/10.15386/cjmed-970.

Tamimi, D. F., & Hatcher, D. C. (2016). Specialty imaging: Temporomandibular joint. Specialty Imaging.

Hechler, B., Phero, J. A., Van Mater, H., & Matthews, N. S. (2018). Ultrasound versus magnetic resonance imaging of the temporomandibular joint in juvenile idiopathic arthritis: a systematic review. International Journal of Oral and Maxillofacial Surgery, 47(1), 83–89. https://doi.org/10.1016/j.ijom.2017.07.014.

Vogl, T. J., Günther, D., Weigl, P., & Scholtz, J. (2021). Diagnostic value of dynamic magnetic resonance imaging of temporomandibular joint dysfunction. European Journal of Radiology Open, 8, 100390. https://doi.org/10.1016/j.ejro.2021.100390.

Wahaj, A., Hafeez, K., & Zafar, M. S. (2016). Association of bone marrow edema with temporomandibular joint (TMJ) osteoarthritis and internal derangements. CRANIO: The Journal of Craniomandibular & Sleep Practice, 35(1), 4–9. https://doi.org/10.1080/08869634.2016.1156282.

Ravanelli, M., Bottoni, L., Buffa, I., Tononcelli, E., Borghesi, A., Maroldi, R., & Farina, D. (2021). Real-time assessment of temporomandibular joint using HASTE sequences: feasibility and comparison with standard static sequences. Dentomaxillofacial Radiology, 50(4), 20200232. https://doi.org/10.1259/dmfr.20200232.

Daiem, H. a. M. A., Abdeldayem, M. a. M., & Eldin, O. a. G. (2022). Added value of dynamic 3T-MRI to conventional static MRI in evaluation of internal derangement of tempromandibular joint. Clinical Imaging, 91, 105–110. https://doi.org/10.1016/j.clinimag.2022.07.012.

Ma, R., Li, G., Sun, Y., Meng, J., Zhao, Y., & Zeng, H. (2019). Application of fused image in detecting abnormalities of temporomandibular joint. Dentomaxillofacial Radiology, 48(3), 20180129. https://doi.org/10.1259/dmfr.20180129.

Al-Saleh, M. A., Alsufyani, N., Lai, H., Lagravère, M. O., Jaremko, J. L., & Major, P. W. (2017). Usefulness of MRI-CBCT image registration in the evaluation of temporomandibular joint internal derangement by novice examiners. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 123(2), 249–256. https://doi. org/10.1016/j.oooo.2016.10.016.

Lee, J., Kim, D., Jeong, S., & Choi, S. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry, 77, 106–111. https://doi.org/10.1016/j.jdent.2018.07.015.

Machoy, M., Szyszka-Sommerfeld, L., Végh, A., Gedrange, T., & Woźniak, K. (2020). The ways of using machine learning in dentistry. Advances in Clinical and Experimental Medicine, 29(3), 375–384. https://doi.org/10.17219/acem/115083.

Kim, J., Kim, D., Jeon, K. J., Kim, H., & Huh, J. (2021). Using deep learning to predict temporomandibular joint disc perforation based on magnetic resonance imaging. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86115-3.

Orhan, K., Driesen, L., Shujaat, S., Jacobs, R., & Chai, X. (2021). Development and validation of a Magnetic Resonance Imaging-Based Machine Learning model for TMJ pathologies. BioMed Research International, 2021, 1–11. https://doi.org/10.1155/2021/6656773.

Published

2024-03-27

How to Cite

Shtybel, D., Kulinchenko, R., Palamarchuk, Y., & Dvornyk, A. (2024). ABILITIES OF MODERN MRI EXAMINATION IN COMPLEX DIAGNOSIS OF TEMPOROMANDIBULAR DISORDERS. Via Stomatologiae, 1(2), 56–65. https://doi.org/10.32782/3041-1394.2024-2.7

Issue

Section

ORTHOPEDIC DENTISTRY