THE ROLE OF NO AND ARGININE IN INFLAMMATORY DISEASES OF THE UROGENITAL SYSTEM AND PATHOSPERMIA
DOI:
https://doi.org/10.32782/2786-9067-2023-25-15Keywords:
Nitric oxide, pathospermia, L - arginine, sperm, NOS (bNOS) and (eukNOS).Abstract
Abstract. Ukraine, the number of infertile couples reaches almost 20%, which is due to both genetic and anthropogenic factors, including xenobiotics. According to research, up to 50% of couples' infertility is caused by the female factor and about 50% by the male factor. The influence of urogenital infections on the development of infertility in men depends on the prevalence of inflammatory processes caused by bacterial endotoxins. Microorganisms can damage the tissues of the reproductive organs and disrupt the processes of spermatogenesis, influence the formation of the liquid part of sperm. Microorganisms can damage the tissues of the reproductive organs and disrupt the processes of spermatogenesis and affect the formation of the liquid part of the sperm. The infectious process leads to a change in the microbiome, which is always accompanied by an increase in the levels of nitric oxide (NO) and reactive oxygen species (ROS). Low levels of ROS produced in spermatozoa are involved in regulating the fertilizing ability of sperm. By their nature, spermatozoa are very sensitive to oxidative stress. This is due to the fact that the gametes lack antioxidant protection. The expression of NO-synthase (NOS) is activated by pro-inflammatory cytokines, free fatty acids, endotoxins and pathogenicity factors of microorganisms, in particular, microorganisms of the male genitourinary system. Biochemical processes related to NO are the fundamental units influencing the change of qualitative and quantitative indicators of the microbiome in the development of pathophysiological changes. Microbial synthesis of NO can be achieved by bacterial NOS (bNOS), which is similar in characteristics to eukaryotic NOS (eukNOS). Arginine is a substrate for arginase and nitric oxide synthase, both cNOS and iNOS, as well as a source of nitrogen for microorganisms. In this regard, the analysis of the bacterial spectrum of the male urogenital tract, in particular bacteria capable of generating NO, and the elucidation of changes in nitric oxide and arginine parameters in the seminal plasma of men with idiopathic infertility are relevant.
References
Choudhari S.K., Chaudhary M., Gadbail A.R., Sharma A., Tekade S. Oxidative and Antioxidative Mechanisms in Oral Cancer and Precancer: A Review. Oral Oncology. 2014;50:10-18. https://doi.org/10.1016/j.oraloncology.2013.09.011
Chen Y, Rosazza J.P, “A bacterial nitric oxide synthase from a Nocardia species,” Biochemical and Biophysical Research Communications. 1994; vol. 203, no. 2, pp. 1251–1258. DOI: 10.1128/jb.177.17.5122-5128.1995
Choi W.-S., Chang M.-S., Han, J.-W., Hong, S.-Y, Lee H.-W. “Identification of nitric oxide synthase in Staphylococcus aureus,” Biochemical and Biophysical Research Communications, 1997; vol. 237: 3:554–558. DOI: 10.1006/bbrc.1997.7189
Kuroda M., Ohta T, Uchiyama N.et al., “Whole genome sequencing of meticillin-resistant Staphylococcus aureus,” The Lancet. 2001; 357:9264:1225–1240. DOI: 10.1016/s0140-6736(00)04403-2
Kunst, F., Ogasawara N., Moszer I. et al., “The complete genome sequence of the gram-positive bacterium subtilis,” Nature. 1997;390: 6657: 249–256. DOI: 10.1038/36786
Takami H., Nakasone K., Takaki Y.et al., “Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis,” Nucleic Acids Research. 2000;28:21:4317–4331. DOI: 10.1016/S0378-1119(01)00339-0
White O., Eisen J.A., Heidelberg J.F. et al., “Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1,” Science. 1999;286:5444:1571–1577.
Yarullina D.R., Il'inskaya O.N., Aganov A.V., Silkin N.I., Zverev D.G., “Alternative pathways of nitric oxide formation in lactobacilli: evidence for nitric oxide synthase activity by EPR,” Microbiology.2006;75:6:634–638. https://www.academia.edu/en/2344423/Genome_sequence_of_the_radioresistant_bacterium_Deinococcus_radiodurans_R
Johnson E.G., Sparks J.P., Dzikovski B., Crane B.R., Gibson D.R., Loria R. “Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals,” Chemistry & Biology. 2008; 15: 1:43–50. https://doi.org/10.1016/j.chembiol.2007.11.014
Das P., Lahiri A., Lahiri A., Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6:363. doi: 10.1371/journal.ppat.1000899.
Bussiere F.I., Chaturvedi R., Cheng Y., Gobert A.P., Asim M., Blumberg D.R., Xu H., Kim P.Y., Hacker A., Casero R.A., Jr., et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 2005;280:2409–2412. doi: 10.1074/jbc.C400498200.
Lahiri A., Das P., Chakravortty D. Arginase modulates Salmonella induced nitric oxide production in RAW264.7 macrophages and is required for Salmonella pathogenesis in mice model of infection. Microbes Infect. 2008;10:1166–1174. doi: 10.1016/j.micinf.2008.06.008.
Talaue M.T., Venketaraman V., Hazbon M.H., Peteroy-Kelly M., Seth A., Colangeli R., Alland D., Connell N.D. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J. Bacteriol. 2006;188:4830–4840. doi: 10.1128/JB.01687-05
El Kasmi K.C., Qualls J.E., Pesce J.T., Smith A.M., Thompson R.W., Henao-Tamayo M., Basaraba R.J., Konig T., Schleicher U., Koo M.S., et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 2008;9:1399–1406. doi: 10.1038/ni.1671.
Aoki M.P., Guinazu N.L., Pellegrini A.V., Gotoh T., Masih D.T., Gea S. Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes. Am. J. Physiol. Cell Physiol. 2004;286:206–212. doi:10.1152/ajpcell.00282.2003.
Ghosh S., Navarathna D.H., Roberts D.D., Cooper J.T., Atkin A.L., Petro T.M., Nickerson K.W. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW264.7. Infect. Immun. 2009;77:1596–1605. doi: 10.1128/IAI.01452-08.
Cunin R., Glansdorff N., Pierard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 1986;50:314–352. doi: 10.1128/mr.50.3.314-352.1986
Dong Y., Chen Y.Y., Burne R.A. Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J. Bacteriol. 2004;186:2511–2514.
doi: 10.1128/JB.186.8.2511-2514.2004.
O’Driscoll B., Gahan C.G., Hill C. Adaptive acid tolerance response in Listeria monocytogenes: Isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 1996;62:1693–1698. DOI: 10.1128/aem.62.5.1693-1698.1996
Gobert A.P., McGee D.J., Akhtar M., Mendz G.L., Newton J.C., Cheng Y., Mobley H.L., Wilson K.T. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci. USA. 2001;98:13844–13849. doi: 10.1073/pnas.241443798.
Das P., Lahiri A., Lahiri A., Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6:363. doi: 10.1371/journal.ppat.1000899.
Maghnouj A., Abu-Bakr A.A., Baumberg S., Stalon V., Vander Wauven C. Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol. Lett. 2000;191:227–234. doi: 10.1111/j.1574-6968.2000.tb09344.x.
Gruening P., Fulde M., Valentin-Weigand P., Goethe R. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J. Bacteriol. 2006;188:361–369. doi: 10.1128/JB.188.2.361-369.2006